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Diagnosis of Type II Diabetes based on Non-glucose Regions
of 1H NMR Spectra of Urine

A metabonomic approach
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A NMR dataset with non-buffered urine samples consisting of 73 controls and 94 type II diabetes was subject
to an in-house statistical classifier. A model was developed based on two glucose-free regions of the spectrum
and those maximally discriminatory subregions selected most often by the algorithm were noted. The final
classifier achieved 83.0% sensitivity and 83.6% specificity, with 83.2% overall accuracy. There were five
spectral subregions selected by the algorithm as most relevant for discrimination. The protocol works well
with non-buffered samples and has the potential for an automated clinical diagnosis of diabetes.
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Diabetes is a chronic life-threatening disease in which
the body does not properly produce or respond to insulin,
and is characterized by increased levels of blood glucose
leading to severe damage to vital organs such as heart,
eyes and kidneys. Traditional methods of monitoring the
blood glucose concentration of an individual require that
blood be taken by venipuncture. This method can be painful,
inconvenient, and poses a risk of infection. A non-invasive
method for measuring glucose involves urine analysis.
However, glucose urine analysis may not reflect the correct
status of the patient’s blood glucose, because glucose
appears in the urine only after a significant period with a
presence of elevated levels of blood glucose. In diabetes,
there may also be metabolic alterations in serum and urine
other than the changes in the levels of glucose, and
identification of such metabolites in urine could be useful
in the development of non-invasive methods for the early
diagnosis of diabetes [1].

Recently, the first two large scale epidemiological
studies on long term effects (5 years) of intensive therapy
for lowering glucose levels have shown contradictory
results on the long term effects [2, 3]. Each of the studies
was run on more than 10,000 participants, and both studies
showed that near-normal glycemic control for three and a
half to five years does not reduce cardiovascular events.
Moreover, one of the studies revealed that the intensive
glucose control via medication resulted in the increased
risk of death from other causes, including cardiovascular
[2]. These controversial findings will have to be addressed
in the future with further evaluations of the reported data
and also with further large scale trials. Regardless of how
these epidemiological studies are assessed by the medical
community in the future, the fact that glucose is not the
only important parameter in the pathophysiology of diabetes
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is now widely accepted and the need for finding alternative
markers to glucose, such as the method developed in this
study, is crucial.

The possibility of quantifying glucose in urine by proton
NMR spectroscopy was demonstrated as soon as high
resolution NMR was applied to the study of intact body
fluids [4-6]. Since a single NMR measurement can
determine the concentration of other metabolites as well
as glucose in a given sample, there is added value for the
NMR approach in comparison with the usual tests [7-11].
Moreover, in order to diagnose diabetic patients with non-
glucosuria, or in order to diagnose early stages of diabetes
that will develop glucosuria at a later stage, it is highly
important to develop diagnostic tests which rely on
metabolites other than glucose [12, 13].

Over the years, in addition to glucose, other metabolites
have been shown to be present at abnormal concentration
levels in diabetic patients [14-17]. In spite of the potential
for non-glucose NMR diagnosis of diabetes, previous
reports in the literature revealed that although the averaged
values for concentrations of various metabolites are
different in diabetics and controls, the intervals over which
the individual values are spread, overlap significantly [14-
17]. This overlap of individual concentrations makes it
impossible to develop a reliable clinical diagnosis of
diabetes based on NMR-derived concentrations for
metabolites other than glucose. Thus, averaged
concentrations of metabolites may only be used for studies
evaluating metabolic perturbation tendencies (e.g. for
exploring the mechanism of the disease). It has become
obvious that a reliable diagnostic test for diabetes based
on NMR evaluation of metabolites other than glucose could
be developed only with the help of a statistical classifier
that would take into account either the whole spectrum,
or at least large parts of the spectrum [18]. This has been
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successfully used in various other applications [18-21].
Considering (i) the huge number of people diagnosed
worldwide with diabetes, thus the readily access to
pathological samples, (ii) the current NMR techniques
allowing fast, cheap and highly reproducible automated
screenings, and (iii) the large number of algorithms for
classifying spectra, the small number of published papers
on 1H NMR urine analysis of diabetic patients to date is
quite surprising. Recent review covers the metabonomics
aspects relevant for NMR diabetes studies [22].

Experimental part
Patient recruitment and sample collection

The study was approved by the Local Ethics Committee
of the Diabetes, Nutrition and Metabolic Diseases
Department of Craiova Clinical Emergency Hospital. The
control group was made up of 73 subjects, 41 females and
32 males, characterized by a mean age of 35 years
(ranging between 23 and 67 years).  The type II DM group
was made up of 107 patients, 58 females and 49 males,
characterized by a mean age of 54 years (ranging between
25 and 75 years). The diagnostic criteria used for type 2
diabetes mellitus was according to the methods
established by the American Diabetes Association [23].
These methods are (1) symptoms of diabetes plus a
random plasma glucose level ≥ 200 mg/dL (11.1 mmol/
L), (2) a fasting plasma glucose of ≥ 126 mg/dL (7.0 mmol/
L) or (3) an oral tolerance test with a 2-h post-load (75 g
glucose load) level ≥ 200 mg/dL (11.1 mmol/L). Any of
these was confirmed on a subsequent day by one of the
three methods. The patients had a history of type 2 diabetes
mellitus for less than 5 years, were hospitalized in Craiova
Emergency Clinical Hospital, receiving diabetic treatment
and medical care. No special diet was imposed, apart from
avoiding fish for 24 h before sample collection. The urine
samples were collected between 10 a.m - 2 p.m  in sterile
containers with tight-fitting covers and further analyzed by
an Abbott Analyzer for creatinine (alkaline picrate method)
and urea nitrogen (urease method), and by semi-
quantitative methods (Reagent Tests Strip for urobilinogen,
pH, bilirubin, blood, ketone bodies, specific gravity,
leukocyte, proteins, ascorbic acid, nitrite, and glucose). In
the morning of the same day, patient blood samples were
collected and analyzed for glucose, urea nitrogen and
creatinine on an Abbott Analyzer.  All these criteria were
used to eliminate patients with possible urinary infection
or renal involvement. The urine samples were frozen and
stored at -79oC until 1H-NMR analysis.

NMR Experiments
The NMR spectra were recorded on a Bruker Avance

DRX 400 MHz spectrometer, using a 5 mm inverse
detection multinuclear probe equipped with gradients on
the z-axis.  The samples were run in 5 mm Norell 507 NMR
tubes.  Before NMR analysis, the samples were allowed to
reach room temperature (typically one hour) and
centrifuged at 7,000 rpm for 10 min. To 0.9 mL urine, 0.1
mL of a stock solution of 5 mM sodium 3-(trimethylsilyl)-
[2,2,3,3-d4]-1-propionate (TSP) (Aldrich) in D2O (Aldrich)
was added. The pH was not adjusted. Most of the samples
had pH values ranging from 5 to 6 with a few extremes
between 6.5 and 7. The chemical shifts are reported as δ
values (ppm) referenced to TSP as internal standard. The
1H-NMR spectra were recorded with water presaturation.
The pulse sequence used 32 scans, a 90o pulse, 30 s
relaxation delay, 3 s CW irradiation, 4 s acquisition time,
4790 Hz spectral window, collecting 38 K data points, with
a resolution of 0.13 Hz. Although the use of either no line

broadening or 0.3 Hz line broadening is common in post-
acquisition FID processing, we have chosen a value of 0.5
Hz.  We found this value to be sufficient to resolve signals
of interest and to perform proper assignment of resonances
[16].

Data analysis
The spectra were converted from Bruker into ASCII

format for both the real and imaginary parts. Magnitude
spectra were derived from these and used in the analysis
as this mode is less prone to phasing errors. For training the
statistical classifier, only patients presenting glucosuria
were used (94 out of 107 samples). The remaining 13
samples were set aside to test whether they would classify
as DM once the classifier development was complete.

In order to exclude any interference with glucose (which
if taken into account would give 100% accuracy) and
eliminate possible operator errors induced with the addition
of the TSP solution, the following two regions were used
as inputs into the statistics program: 0.755 – 2.800 ppm
(2,800 points) and 6.400 – 9.468 ppm (4,200 points). Within
each of these regions, the spectra were normalized by
dividing every data point by the total spectral area of the
region. One may note that the excluded region is actually
larger than the glucose chemical shifts region. This was
done to exclude any possible artifacts due to the tailoring
effect of the glucose signal in some of the high glucosoria
patients, water suppression, and the broad and variable
urea signal.

The statistical software was programmed in-house at
the NRC Institute for Biodiagnostics (Winnipeg). A few
maximally discriminatory subregions were selected from
the input spectral regions using a genetic algorithm (GA)-
driven optimization method [24]. Initially, a random set of
subregions is selected. All data points are averaged within
each subregion, and the resulting points are input to a linear
discriminant analysis (LDA) classifier. As the GA process
runs, mutation and crossover operations are performed on
the region lists in an attempt to find subregions yielding
higher LDA classification accuracy.

To improve classification reliability, the GA optimization
process was run 50 times with each of 5 random splits of
the data into training and monitoring sets. Each random
split used 60 normal samples out of the 73 available and
75 diabetes samples out of the 94 available. The normals
were given extra weight (1.25) in the calculations to help
improve the balance in classification accuracy between
the two classes. Each time, the GA was asked to find four
discriminatory subregions. On completion of the GA
process, histograms of the subregions selected were
produced, and the subregions selected most-often were
used in the final classifier, with LDA coefficients obtained
using bootstrapping. For this final bootstrapping step, the
dataset was split into training and test sets randomly 10,000
times and a weighted average of the sets of coefficients
giving the highest classification performance on the test
set was computed for use in the final classifier.

Results and discussions
A representative NMR spectrum of urine from a patient

with DM2 is shown in figure 1. As can be seen from the
shaded regions in the figure, there were five spectral
subregions selected by the algorithm and used for the final
classification: 8.09–8.01, 7.71–7.68, 2.67–2.60, 2.09–2.03,
and 1.28–1.19 ppm. These regions were most commonly
selected for each of the training/test splits. The respective
histogram for each split showed portions of at least three
and as many as five of these regions as most commonly
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occurring. These regions could be assigned to several
metabolites. However, our effort at this stage was primarily
geared towards finding an accurate diagnostic test that
works well in a blinded fashion without the need to know
the identity of the discriminatory peaks. The final classifier
after bootstrapping had 83.0% sensitivity and 83.6%
specificity. There was also an additional set of 18 samples
obtained from diabetic patients without glucosuria. When
these spectra were subject to the classifier, 12 of the 18
were correctly classified as diabetes.

Detection of glucose in urine from diabetic patients
cannot be a useful method for the early non-invasive
diagnosis of diabetes mellitus, because we can only
observe glucose in urine at a later stage when the serum
glucose levels are very high. In the present study, we have
used the non-glucose regions of the 1H NMR spectra for
the classification of urine samples from diabetic and non-
diabetic subjects. These results are very encouraging,
especially since they were obtained without resorting to
the glucose signal. Moreover, the fact that 67% of the
samples from the non-glucosuria subjects were correctly
classified as DM suggests that our approach has the
potential to detect early changes in the disease process.

Increases in relative concentrations of hydroxybutyrate
which result from increased beta-oxidation of fatty acids
have been observed previously in type 2 diabetic patients
[14, 25]. Increases in hippurate concentration in type 2
diabetic patients have been observed previously [14, 26]
but the exact mechanism of this has not been explained.
Hippurate was not selected to be discriminatory in our
study. Higher citrate concentrations have also been
observed previously in DM patients [12, 14, 25] which was
not the case in our study. This had been postulated to be
due to increased citrate production in the tubular cells or/
and reduced citrate reabsorption from the tubular fluid
because of glucose overflow. Moreover, acetate which has
been found to be elevated in Type 2 DM in previous studies
[12, 26] was not selected as discriminatory in the present
study. The resonance due to trimethylamine-N-oxide
(TMAO) was excluded from the analysis due to its proximity
to the glucose signal. The main objective of the present
study was merely to assess the diagnostic utility of such
NMR-based analysis of urine from patients with diabetes.
Hence, no extensive effort was made at this stage to
evaluate individual metabolite concentrations and their role
in the mechanism of the disease.

In previous studies, urine was subject to NMR analysis
both with [12, 14, 27], and without [15, 17] pH adjustment.
The pH adjustment has the advantage of simplifying the
peak assignments as they would appear at the same
chemical shift value. Analysis without pH adjustment
avoids additional manipulations of the sample (limiting
operator errors and reducing cost) and provides an extra
parameter (chemical shift variation) for the chemometric
treatments of the NMR data. Moreover, we found that adding
a buffer solution to urine, produces in many cases a
precipitate which has to be further removed from the
sample. This behavior was also reported by other groups
[12]. Thus, in the present study we have chosen not to
adjust the sample pH.

At the current stage of the metabolomic/metabonomic
development, with particular relevance to diabetes
diagnosis, it is essential to push for more sample datasets,
various magnetic field strengths, larger cohorts, alternative
statistics classifiers and data processing approaches, in
order to move away from the uncertainties related to small
cohorts, stratification of particular populations, drug specific
metabolites, overfitting of data, lack of cross-validation,
and so on. In this respect it worth mentioning that recently
two different groups published different statistical
approaches and algorithms applied to the same datasets
[12, 28, 29]. This approach of sharing row datasets should
be highly encouraged for the sake of establishing the NMR
based metabolomics as a validated diagnostic tool in
medicine. In order to achieve this, we need more groups
to publish their in-house data on both control and
pathological groups. Our present study was aiming to
contribute to filling this gap. Ideally, on long term, a unified
sample preparation and NMR experimental protocol should
be agreed by the metabolomic community. Meanwhile,
differences in analytical protocols of various groups,
particularly variations of samples pH should be coped with.
Our statistical classifier was shown to work very well on
non-buffered samples. Also, in comparison with previously
described approaches [12, 13], our dataset was collected
at lower magnetic field strength and the statistical classifier
selected less discriminating regions.

Conclusion
We have developed a classifier for type II diabetes based

on the non-glucose regions of the NMR spectrum that has

Fig. 1. 1H-NMR spectrum (400 MHz,
 25°C) of a urine sample belonging to

the DM II group showing the two input
subregions and the five

discriminatory regions identified by
the optimal region selection

algorithm.
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the potential for early diagnosis. The excellent predictive
values of our model were obtained with minimal sample
preparation. While it is possible that a more sophisticated
sample preparation protocol may produce slightly improved
discrimination results, we consider that keeping the
sample preparation minimal allows the method to work
better for individuals whose urine physico-chemical
parameters deviate strongly from the average ones, and
will be simpler to implement in the clinic. While it is likely
that using buffered samples, would improve both the
sensitivity and specificity of the method, the present
algorithm proved very good results and should be also
robust to data recorded in various laboratories and/or to
samples with pH and ion concentrations that deviate
strongly form the average ones. Furthermore, the basic
preparation of samples, in addition to being faster and more
convenient, is also less prone to operator errors. Our method
may allow detection of the onset of type II diabetes before
detectable levels of glucose are present in urine, leading to
an earlier diagnosis of the onset of the disease. We intend
to confirm this conclusion by studying a larger patient
cohort.
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